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The resonant interaction of three two-dimensional wave packets of capillary and flexural-gravitational waves on the surface of
an infinitely deep ideal liquid is investigated. Universal asymptotic equations are obtained using the Hamiltonian approach. The
main types of decaying interactions are determined as a function of the group velocities of the wave packets. New exact waveguide-
type solutions of the equations describing the interaction between three waves are obtained and investigated taking dispersion
into account. By reducing the dynamical system to a central manifold it is proved that a wide class of solutions of the waveguide

type exists, which depend on five arbitrary constants. It is proved that they are stable with respect to slow changes in the waveguide
boundaries and in the amplitudes of the waves propagating along it. © 1997 Elsevier Science Ltd. All rights reserved.

The main feature of the non-linear interaction of three plane wave packets, ignoring dispersion, is
the decay of the envelope of the “pumping” wave when it collides with the secondary waves [1, 2].
Complete decay only occurs when the velocity of the “pumping” wave is intermediate. It was assumed
in [3] that, in the majority of physical applications, in the resonant interaction of three waves the velocity
of the “pumping” wave is extremal. It is shown below that, in the same physical system, different types
of decay interactions can occur depending on the relation between the wave vectors of the resonant
harmonics.

It was shown in [4] that dispersion effects in the interaction between three plane waves can lead to
the formation of coupled solitons, when all three waves propagate under on envelope. Coupled-soliton
type solutions were investigated by numerical methods. In this paper new waveguide-type solutions of
the equations describing the interaction between three two-dimensional wave packets with dispersion
are obtained analytically and investigated.

1. DERIVATION OF THE ASYMPTOTIC EQUATIONS

The equations of the potential motions of an infinitely deep liquid layer can be written in the form
[5, 6]

on _OH d¢° _ 8H (1.1)
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where z = n(t, x) and ¢°(t, x) are the perturbation of the liquid surface over the horizontal position of
equilibrium and the value of the velocity potential on it, x = (, y) are the horizontal coordinates and
z is the vertical coordinate.

The Hamiltonian H is equal to the sum of the total energy of the liquid E and the surface energy F

H=E+F (12)
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The Hamiltonian H is a functional of ¢° and 1 if ¢’ is the boundary value of the velocity potential o,
which satisfies Laplace’s equation

Ap=0, —o<z< (1.3)
and the boundary condition
09 /dz >0, z> —e (14)

Equations (1.1) are the kinematic boundary condition and the Cauchy-Lagrange integral on the
unknown boundary of the liquid z = 1.

The expression for F depends on the physical nature of the phenomena being investigated. We will
consider two specific cases below: small-amplitude capillary-gravitational waves and flexural-
gravitational waves.

The solutions of Eqs (1.1) for which the condition & = a/A < 1 is satisfied will be called small-amplitude
waves, where a and A are the characteristic amplitude and characteristic width of the wave packet. When
investigating the interaction between small-amplitude wave packets the dependence of (d@/dz)’ on ¢’
and n can be obtained in the form of series in powers of €.

To isolate the parameter € in (1.1) in explicit form we will change to dimensionless variables, denoted
by letters with primes

L =1yg, Mx.Y.2)=(x,,2), ¢'\Jagh =9, Wa=n (15)
E'a’g=E, Fa’g=F

where p is the liquid density. The primes will henceforth be omitted.
In dimensionless variables the total energy E, the energy F,, of the surface tension [7] and the energy
F,, of the elastic plate [8] have the form

o0

E =%f I {tp‘[ev(p’vn—(%‘f) (1+82(Vn2))}+n2}dxdy
%
e ), oY
Fo=— 21 0 21 o
=50 J_£[1+E (ax) +E [ay) ] dxdy

D= Y oot
F,=— an?+20-v) | — | - 221220
P 21_{.,{( A V)[[axay) ox? dy? dxdy

=% po ER®
pgh?’ 12pg(1-v2)a?

Here » is the surface-tension coefficient, E is Young’s modulus, and v and A are Poisson’s ratio and the
plate thickness.
The solution of Eq. (1.3) corresponding to fairly rapidly decreasing initial data, has the form

0=T 19,k DE™hdk, k=(kyk,), k=IK (16)

We will assume that, at the initial instant of time, the function ¢y is non-zero only in the e-neighbourhood
of the wave vectors k;k;. During the course of time, as a result of non-linear interactions, the spectrum
will broaden due to the excitation of multiple harmonics. Hence, at any instant of time we can formally
write the expansion

0°= T o (X, )™ ™ oo = (@on)’ (1.7)

X =¢ex, m=(m,my), k, =mk, +m,k,
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The superscript open circle denotes that the value of the function is taken at z = 0, while the asterisk
denotes complex conjugation. The symbol 3., denotes summation over m; , from —oe to . It follows
from (1.6) and (1.7), to terms of the order of O(e?), that

(58] ={l-mmena e arjee 9
) 02 3 92
’ = s Vx=—a VXX=__’ V = V..=“'—,
(a,)=(x,5) g Ve Ty Vs Va=oo

The subscript m denotes that the value of the function is taken when k = ky,. Summation is assumed
over repeated subscripts o, B.
The functions ¢, (3g/z)° can be represented, to terms of the order of O(¢?), in the form

o{i-Srafee(]
() {r-5re)3) e ®

From (1.7)<(1.9) we obtain the formulae

s (oY s kX
[TMY ’(5?) J =X (M Pns @, )X, e Y

* S* *
(n—m O P._m )= (Tl.. ' Pm>Prm ) (1.10)
Pom = km(p:l + EZ(,‘Z -n kmkm-n )nn(p:;n—n - l'G(ng)mVa(p‘:n + 0(82 )

Using expansions (1.10), the Hamiltonian H can be expressed explicitly in terms of 1, 7.
The asymptotic equations for the slowly varying amplitudes of the wave packets have the form
(6]

M _ OH ), OH
e ,%=-_S (1.11)

An expression for the average Hamiltonian H can be obtained from (1. 2) and (1.10) by dropping all
terms under the integral proportional to the rapidly varying exponential function.
Substituting the following formulae into (1.11)

N (X, 1) = A (X, T, @5 (X,0) = 0 (X, T, @, =me, +myw,, T=¢t
o, =0k, )=k, Lk,,) (1.12)

where @ = (k) is the dispersion relation of the linear approximation, and eliminating #,, from the
equations obtained, we have

02 —0’(k,) 0
z-—-—(;m——'-“— O+ Zs(ﬁ -Vio,V, )(pm +

+EY Uy Prn—n +iezV°‘meVap(pm +...=0 (1.13)
m

k 1
=01)‘m 8 (kknn — k2

m-n nkm—n)—i(knkm—n +knkm—n)

amn
m-n

It can be seen from (1.13) that the amplitude @y, is of the order of € if w2, — @’(ky) = O(1). Hence,
harmonics whose wave numbers satisfy the synchronism conditions
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k; +k; =k;, ok)+adk,;)=ok;) (1.14)

interact most intensely.
The dispersionless equations of the resonant interaction of three wave packets follow from (1.13)

(9 o .

* *
N =0,03, Ny =003, N3=9,9,, ¢; =0,/ k;
1 _ _
W= E[cz'(k,k3 —kik3) +cp ' (kpks —koky ) — ¢3! (kiky + Kkjy))

Equations (1.15) are universal and, when considering different surface phenomena, only the coeffici-
ents for the non-linearity will differ, and these are determined by the dispersion relation of the linear
approximation.

The properties of the solutions of Egs (1.15) depend on the relations between the group velocities
and on the signs of the coefficients of the quadratic terms, which are the same in the case considered.
Hence, it follows that it is impossible to obtain explosive-type interactions [3].

In the general case of the interaction of two-dimensional wave packets with unequal group velocities,
solutions describing partial or complete decay (depending on the ratio of the amplitudes) of a wave @,
localized in a plane to localized waves ¢, and ¢, are obtained analytically. Here the form of the wave
packets does not change [9].

2. THE CONDITIONS FOR RESONANT INTERACTION

We will assume that there is a direction in the (x, y) plane along which the group velocities of the
interacting wave packets V;w; are equal to c. We will choose this direction as the x axis. Changing to
a system of coordinates which moves in space with velocity ¢, we obtain that, in Eqs (1.15), the partial
derivatives with respect to the x direction disappear, and the system reduces to the plane case.

The properties of the solutions of system (1.15) in the plane case have been investigated in detail in
[3, 10, 11] and depend on the ratio of the group velocities Vin}-. If the velocity Viw; of the pumping
wave @, is intermediate, Viw; € (Vho,, Vim,), then @3 decays into @;, ¢, completely over an infinite
time interval for values of ¢,, ¢, as small as desired until interaction begins. The solutions of the equations
describing this phenomenon can be obtained analytically using the inverse scattering problem method
[1, 3] or by a shift in symmetry group from the zero “bare” solution [10, 11].

It was pointed out in [3] that, in the majority of problems having a physical application, the velocity
of the pumping wave turns out to be extremal. In this case the analytically obtained solutions have no
physical meaning since they contain singularities where the amplitudes ¢; become infinite at some instant
of time. Numerical investigations [1, 2] show that the intensity of the pumping wave falls considerably
only after collision with the fairly large wave ¢, or ¢,. Here, as a result of interaction, a considerable
portion of the energy transfers into ripple waves, which form a “tail” on the soliton of the pumping
wave.

In both cases, the decay processes depend very much on the amplitudes of the interacting waves. If
¢@; depends on x, the interaction parameters will be different for different values of x. Hence it can be
seen that the derivatives dp;/dx may increase with time. In this case dispersion in the x direction may
influence the interacting wave packets.

The equations of the interaction of three waves, taking dispersion in the x direction into account,
can be derived from (1.13) in the same way as (1.15). Here it is assumed that the characteristic dimensions
of the wave packets are such that the condition d@/dY = 0(82<pj/8X 2) is satisfied. In a system of
coordinates moving along the x axis with velocity c, they have the form

) .9 1 9? .
:(ﬁ—vkmj—a-;)(pj+5\7fmj5—gz—(pj=Wc,-N,-,J=l,2,3 (2.1)
E=X+cT

Note that the equations of three-wave interaction, taking dispersion into account, were investigated
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previously in [4, 11]. The additional dispersion term in the equations in this case is much less than the
terms with first derivatives, since it is proportional to a2<p,-/aY2. Hence, when investigating the exact
solutions one must ensure that this condition is satisfied. In the case considered all the terms in (2.1)
have the same order of smallness.

We will consider the conditions for deriving Eqs (2.1) in more detail. They consist of the synchronism
conditions (1.14) and the conditions for the group velocities to be equal along the x axis

Viw, =Viw, =Vio, 2.2)

For convenience we will take the solutions of Eqs (1.14) in the form

k, =k(cos0,sin8,), k, =ok(cos8,,sinB,)
k; = k(cos9, + o.cos8,, sin6, +asind,) (2.3)

Substituting (2.3) into (1.14) we obtain the following equations for capillary-gravitational waves and
flexural-gravitational waves, respectively

%’ =r,(0,0), Dk*=r,,(8,0), 6=86, -8, 2.4)

Here

_ 2
Vitep = (bsr.ep + \/ b.\‘l.l.’p - f.\'r.epg.\'t.ep )/f\'r.ep

by =20(1+0%) = AjAy, b, =20(1+a*) - A A
f.ﬂ = A% —4(13, fep = A52 _4a5’ Bstep = AI?- -4a

a=vVi+a? +2acos®, A, =1+a" - 3"

Formulae (2.4) parametrically define the wave vectors of the interacting wave packets. The parameters
are the ratio of the moduli of the wave vectors o = k,/k; and the angle 0 between them.

The functions r,, and r, have a physical meaning only in regions where they are greater than zero.
In Figs 1 and 2 these regions are bounded by the straight lines o = 0, 6 = 0, 8 = &t and the curves 4B,
ByCy, A2C, forr and AB, BC and AC for r,,,. The functions 7, and r,, tend to infinity as one approaches
o = 0 and the curvilinear boundaries.

Equations (2.2) have the trivial solution 8, = 8, = n/2. In this case the conditions V;®; = 0 and V}w;
> (i, Viw,) are satisfied, i.e. the velocity of the pumping wave is extremal.

A non-trivial solution exists for flexural-gravitational waves. It is represented in Fig. 2 by the curves
EF and IH. The boundary points of these curves have coordinates E(0.5, ), F(0.88, 0.8x), I(1.14, 0.8x),
H(1.47, m). It can be shown that for this solution the following conditions are satisfied

0 6
B, B, E B H
T 7 T
A / \\ o N
0 a 0 a

Fig. 1. Fig. 2.
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Vio, > Vie,; > Vie,, Vie, <0, 8,(0,1/2)

i.e. the velocity of the pumping wave is intermediate.
Hence, it has been shown that different types of decaying interactions, described by system (2.1),
can exist in one and the same system depending on the wave vectors of the interacting waves.

3. THE EXISTENCE OF WAVEGUIDE-TYPE SOLUTIONS

We will investigate some properties of Eqs (2.1). This system has two conservation laws which are
an analogue of the Manley—Rowe relations, and the law of conservation of energy

J _ d o .
ﬁ(cl.]zl(Pl.z'z*'%]'%'z)+a—Y(C|,12V';‘<0)|.2|‘P|,2|2+C31V'k(°3|‘03|2)+

d o + 0 T |
+¥Im[cl,12vk @292 %‘Pm +¢3' Vo0, 55‘!’3] =0 (31)
o 3 ' * 0 1o |0 2
a_TI_!, [Elckc,[V;“mj Im((pj —8_}7%)+5V" 0; E(Pj J+
+2Weycycy Re(‘Pl(Pz‘P; )]dE_,dY =0 (,k,D)=(1,2,3) 32)
We will seek a solution of (2.1) in the form
Q; =9;(Q)expi(r;E+rY +5;T) (33)

C=c &+, Y+T, ™' +n" =1, 545, =15,
Assuming that
¢, = AN (VE03 (Vo + V@) - Vo, Viw,)
iy = (e 8) 7 (VE03(Vio, - Vie, )+ Vi, (Vie; - Vie, ;) (34)
A=Via;(Vio,Viw, +Vio,Vie)-Vio,Vio Ve,
substituting (3.3) into (2.1) and making a scale transformation of ¢;, we obtain
§; =80, =00 (kD=(1,2.3) (35)
A;=(2s;+2Vi0} + V(7)) (V)
The system of equations (3.5) has the integral

3
Z(Ai‘p.% - ¢§)+ 2¢,9,9; =C, C=const (3.6)
j=I

Note that the three quantities A; depend on five arbitrary constants c,, ) 5, 51 ,. Hence they can always
be chosen so that all A; will be the same and equal to A > 0. In this case it is easy to find a class of exact
solutions of (3.5) whic‘n are expressed in terms of elliptic functions [14, 15]; among these solutions there
are localized waveguide-type solutions

o) = —%ch'z(—‘/g—é) 3.7)
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The parameters c,, ) 5, 51 in solutions (3.7) are not arbitrary and are connected by relations that
arise from the equality A; = A; = A; > 0. Some particular solutions of system (3.5) for other values of
these parameters were obtained numerically in [15]. We will show that for a sufficiently small change
in the parameters A, in the neighbourhood of A, Eqs (3.5) admit of localized solutions of the type (3.7).
It is obvious that this family of solutions will be a five-parameter solution with parameters c,, r 5, 512.

The last assertion will be formulated in the form of the following theorem.

Theorem 1. We will assume that ¢* = (93, 03, 93), 91 = ¢3 = ¢3 = ¢* is a soliton-like solution of
system (3.5) for A; = A (k = 1, 2, 3). Then, for sufficiently small p; a family of soliton-like solutions
9 = (1, ¢, 93) of Eqs (3.5) exists with A; = A + p. In addition, the following limits hold

i@ — @*< ¢ylplexp(—oill)
where p = (3, i, 13), 6 < VA and ¢, is independent of p.

Proof. We represent the solution of Egs (3.5) for A, indicated in the formulation of the theorem, in
the form @; = @* + §,;. Then, system (3.5) can be written in the following matrix form

Lo=¢g (38)
%22-—13 o' o'
Lo o L—Z‘A o
o' —¢' %_A

~ * A A .
8 =HQ; + W +0,0, ixk#l
We further define the Banach spaces
Cej= {(p € C/(R), supexp(ol{Hio™ <o, @()=0(-L), j=0,2, m= j}
X

and we write X; = Cg5 X C52 X Cg 5 and Y = Cg X Cg X Cgp. It is obvious that ¢* € Xy,

The existence and uniqueness of ¢(u) € X, (for sufficiently small p), follows from the theorem of
implicit functions; these satisfy system (3.5) if the operator L: X; — Y; has a bounded inverse. In other
words, it is required to prove that the equation

Lo=f 3.9

has a unique solution ¢ € X, for each f € Y. System (3.9) is equivalent to the system obtained from
it by pairwise subtraction of the equations. The latter, in turn, is equivalent to the equation

+o y=fl=d®/de® - A: C,—CEy). (3.10)

where y is the difference between §; and §; with any unequal subscripts i and j, and f € Cgo. Hence,
the proof of the invertibility of the operator L reduces to proving that Eq. (3.10) has a unique solution
for any f from Cg.

The operator / is invertible since A > 0. Hence, (3.10) can be rewritten in the form

(1 +Flo¥y =rf

The operator I¢*: C&; — C%), 6 < VA is compact. Indeed, the set bounded in C5, is mapped to
this operator in the bounded set in Cg ; with elements having a uniform exponential decrease at infinity.
This indicates that the Artsel-Ascoli theorem is applicable and the transform of the bounded set is
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precompact. We will show that 1 is not an eigenvalue of the operator -~ 1p*. It then follows from
Theorem 1 on page 476 of {12] that the inverse operator (1 + I 19*)! is invertible and continuous. The
equation I"lp*y = x is equivalent to Schrédinger’s equation with a negative scattering potential 3 —
Ay + ¢* = 0, and of course, the corresponding Sturm-Liouville operator does not have a discrete
spectrum. Hence, it follows that ¢ = 0 is a unique solution belonging to Cg».

We will write (3.8) in the form

Lp+G@ =w. |cl, <ol lwl,, <cn (3.11)

where || - ||, and || - ||, are norms in the corresponding spaces. The bounds indicated in the formulation
of the theorem then quickly follow from (3.11).

4. ASYMPTOTIC FORMULAE FOR NON-LINEAR WAVEGUIDES

We will demonstrate the existence of waveguide-type solutions of system (3.5) which differ from (3.7).
To do this we will use the method of reducing the dynamical system generated by (3.5) to a central
manifold [13, 14]. The flow on the central manifold describes all the bounded solutions which do not
leave a small neighbourhood of the state of rest for all positive and negative values of the “time”. The
spatial variable — < x < co plays the part of “time” for travelling waves. All the small bounded solutions
of the dynamical system

w = Aw + F(uL, w) 4.1)

(A : R" - R" is a linear operator—a constant matrix, among the eigenvalues of which there are pure
imaginary ones, F ¢ CX(R", R") for fairly large integer k, F(0, 0) = 0, 3,F(0, 0) = 0 and . is the bifurcation
parameter) lie on the central manifold w, = h(l, wy), wo € E,, invariant to the space extended on the
eigenvectors corresponding to pure imaginary eigenvalues A, w; € E, R" = E, @ E;, and w = wy + w;.
The function h has second order of smallness with respect to i and wy and inherits the properties of
symmetry of system (4.1).

We will distinguish [15] three successive stages of the investigation of the existence of soliton-like
solutions in the case considered:

—reduction of the sixth-order dynamic system (3.5) to a second-order system describing the flux on
the central manifold;

—the approximation of the system on the central manifold to a sequence of integrable systems (in
quasi-normal form [14]) and the description of the soliton-like solutions of the system in quasi-normal
form,;

—proof of the roughness of the soliton-like solutions with respect to any inverse perturbations of
higher order in amplitude.

The invertibility of these perturbations satisfies the corresponding symmetry of the initial equations.
The sequence of solutions of the systems of equations in quasi-normal form is therefore as accurate
an approximation as desired of the soliton-like solution of the complete system (3.5).

We will put ¢; = @3, Ay = A3 = p in (3.5), where p is a small quantity, and A, = A > 0. In this case
system (3.5) can be represented in the form (4.1) where w = (@1, @3, T3, N2)’, nj=¢,j=0,1

0010 0

PO NN R w2
0 0 0 of HO + 910, |
0A00 o

Note that the right-hand side of (3.5) in the case considered anticommutes with isometry R = diag(1,
1,-1,-1),i.e. AR = —-RA and F(u, Rw) = -RF(u, w). This indicates that system (3.5) is invertible, i.e.
among its solutions there are solutions with even ¢; and ¢, and odd 1; and n,. These solutions will also
be called invertible solutions. The eigenvalues A of matrix 4 satisfy the equation 3\.2(}»2 —A) =0, which
has four roots, and of those of zero multiplicity two lie on the imaginary axis. Note that | F(u, w) | <
cpllwl+|w |2) for w sufficiently close to zero.

Suppose w = wy + w,, where wy € E, while w; € E,, and similarly for ¥, and F;; Ay = Algg A1 =
Algy, and the system of equations (3.5) has the form
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Wo = AgWo + Fo(l,wo + 1), Wy = A\wy + F (1, wo + w)) (43)

In addition, neighbourhoods of zero U C Ey, Uj C E, and a neighbourhood A of the point p = 0
obviously exist such that

F=(Fy,F) e CX(Ax U x U}, Ey X E,)

F(0,0), 0,F(0,0)=0

We further use the theorem on a central manifold [14], according to which neighbourhoods of zero
Uy C Uj C Ep, Uy C U7 C E, a neighbourhood Ag C A of the point u = 0 and a function

h(u, wo) € C*1(Ag x Uy, Uy)

exist which possess the following properties:
—the set
M = {(wo, h(p, wp) © Eq X Eylwy € U}

is a local integral manifold of system (4.3) with L € Ag;
—each solution of system (4.3) with p e Ag, wo(€), w1(€) € Uy x U, for all € € R belongs to M;

h(0, 0) = 9,, h(0, 0) = 0;

wo

ifRo: Ey > Ey, Ry E; — E,, are linear isometries, so that Fj(u, Rgwy R1W1) = —R]Fj(],l., Wo, Wl), A)R} =
-R; (j = 0, 1), then h(i, Rywo) = Rih(j, wy). .

rom the theorem on linear manifolds there follows the reduction of system (4.3) for the solutions
which remain in Uy x U for all x € R. These solutions satisfy the equations

Wy = AgWo + By (1, Wo), fo(H,wo)=Fy(l,wy +h(l, wy)) 4.9)

Moreover, the solutions of Eqs (4.4) are invertible with respect to the matrix Rg: R = Ry @ Ry, Ry:
Ey — E. In the case considered the dimension of E; (and, of course, the central manifold also) is equal
to two. The eigenvector and associated vector of the operator A corresponding to A = 0, have the form

Po = col(1, 0,0, 0), ¢, = col(0,0, 1, 0)
(Ao®o = 0, Ag® = @9, Ro®o = @, Ro®, = —9))

0 1 oo
’R"'o-l

0 1
Wo = col(@y, P2, M1, N2) = apPg + a1 ¢,

and of course

A0=

For w, € Ey we have

The associated vector y, and the eigenvector v, of the operator A*, conjugate to the operator A4,
are identical with ¢y and @, respectively.
Equation (4.4) in the @, ¢, basis has the form

a=Apa + go(U, a), a = (ag, )’ 4.5)

and the vector gy == O(u) a | + | a |°) has the components (F, @;) ( =0, 1) F is the vector (4.2) and (, )
denotes the scalar products in R", where

(F, @p) = O(F, @,) = 1/2(nag + ap®y)

The functions ¢, and 1, are of the second order of smallness in a and can be expressed in terms of
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the vector function h(j, a) = (hg, h,)’, which occurs in the theorem on the central manifold, from the

formula @, = hq +h;.
We will further calculate the components kg and k, apart from terms of the order of wla |> + | a /%,
which satisfy the second system of equations of (4.3), from which we have in this case

__ L5 2 45 5
¢, = —A—aO—Fal +o(plal+lal®)

Hence it follows that the flux on the central manifold has the form

1

1
—2—Za8 —Zz—aoal2 +o(ulal+a') (4.6)

. .1
G =9, q =5!~wo‘

Carrying out the scaling 0 = 2A| p |'? Bo(§), 04 = 24| p |2 88,(E), & = 8, & = | w2 |* we obtain,
up to terms of the order of O(p)

agBo =Py, 9Py =sign()Bp - Bo 4.7)
Equations (4.7) for u > 0 have solitary-wave type solutions By = =V(2) ch™ &/2.

Theorem 2 (on the roughness of soliton-like solutions). We will assume that §* = (g, B}) is a soliton-
like solution of Eqs (4.7). Then, for sufficiently small pg, p € (0, pg) a family of soliton-like solution
o = (o, 0y) (1) of the complete system (4.7) exists. The following limits hold

lon — o< ¢gpexp(—otlh)

where ¢y depends only on py, 6 < 1.
Theorem 2 is proved in the same way as Theorem 1. The solutions considered therefore have the

form

2AIprt .\ * 241

= o), of = —— A
chap/ 2 T 25

+o(p)

5. STABILITY OF NON-LINEAR WAVEGUIDES

In Sections 3 and 4 we proved the existence of five-parameter families of waveguide-type solutions
of Egs (3.5). We will investigate their evolution for slow localized perturbations of the wavefront,
amplitude and phase of the waves propagating in the waveguide

9; =@, (c, (LY, UT)E +c,Y + T)expi(rjE+rY +5,T+6,(uY,uT))
i=Rlc, i =Ry/c,, ¥ =n"+r, 04 =8, +6,, p<l (5.1)

A slow change in ¢, denotes a small change in the wavefront and amplitude of the soliton ¢;. The
functions 6;(uY, uT') correspond to a slowly varying wave phase. When p. = 0 the functions (5.1) satlsfy

Egs (3.5).
Substituting (5.1) into (2.1), we obtain, to the first order in p

90, ) 3 oy 0
X §( fﬁ)“*“’f(gf” o; ay)e, =0
T=uT, Y=py

Integrating these equations with respect to & from — to oo, we obtain a system, the general solution
of which has the form

cx=exp(fl+f2—f3),fj fJ(Y VcoT)
6 =AL-f 6, =fi—-fi 6=fi-f
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and describes the propagation of small perturbations along the front of a non-linear waveguide parallel
to the straight line ¢ X + ¢,Y = 0. The perturbations ¢; change the curvature of the wavefront and the
phase of resonantly interacting waves and propagate with their group velocities. The projections of their
velocities onto the Y axis are equal to V.

Thus, we have proved the stability of the solutions considered with respect to slow changes in the

boundaries of the waveguide and the amplitudes of the waves propagating along it.
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