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The resonant interacticm of three two-dimensional wave packets of capillssy and flexural--gravitational waves on the surface of 
an infinitely deep ideal fiquid is investigated. Universal asymptotic equations are obtained using the I4amiltonian approach. The 
main types of decaying interactions are determined as a function of the group velocities of the wave packets. New exact waveguid~ 
type solutions of the equatious describing the interaction between three waves are obtained and investigated takln~ dispersion 
into account. By reducing the dynamical system to a central manifold it is proved that a wide class of solutions of the waveguide 
type exists, which depend on five arbitrary constants. It is proved that they are stable with respect to slow changes in the waveguide 
boundaries and in the ,unplitudes of the waves propagating along it. © 1997 Elsevier Science Ltd. All rights reserved. 

The main feature of the non-linear interaction of three plane wave packets, ignoring dispersion, is 
the decay of the envelope of the "pumping" wave when it collides with the secondary waves [1, 2]. 
Complete decay o]dy occurs when the velocity of the "pumping" wave is intermediate. It was assumed 
in [3] that, in the majority of physical applications, in the resonant interaction of three waves the velocity 
of the "pumping" wave is extremal. It is shown below that, in the same physical system, different types 
of decay interactions can occur depending on the relation between the wave vectors of the resonant 
harmonics. 

It was shown in [4] that dispersion effects in the interaction between three plane waves can lead to 
the formation of coupled solitons, when all three waves propagate under on envelope. Coupled-milton 
type solutions were investigated by numerical methods. In this paper new waveguide-type solutions of 
the equations describing the interaction between three two-dimensional wave packets with dispersion 
are obtained analytically and investigated. 

1. D E R I V A T I O N  O F  T H E  A S Y M P T O T I C  E Q U A T I O N S  

The  equat ions o:f the potential  mot ions  o f  an infinitely deep  liquid layer can be writ ten in the fo rm 
[5, 6] 

811 __. 5/-/ 8q)' = 5/-/ ( 1 . 1 )  

where  z = Tl(t, x) gad ~( t ,  x) are the per turba t ion  o f  the liquid surface over  the horizontal  posit ion o f  
equil ibrium and the value o f  the velocity potent ia l  on  it, x = (x, y)  are the horizontal  coordinates  and 
z is the vertical coordinate.  

The  Hamil tonian  H is equal to the sum o f  the total energy o f  the liquid E and the surface energy F 

H = E + F (1.2) 
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The Hamiltonian H is a functional of q~s and 1] if g¢ is the boundary value of the velocity potential q~, 
which satisfies Laplace's equation 

Aq~ = 0, --0o < z < 1] (1.3) 

and the boundary condition 

a(p I az ~ O, z ~ --~ (1.4) 

Equations (1.1) are the kinematic boundary condition and the Cauchy-Lagrange integral on the 
unknown boundary of the fiquid z = ~. 

The expression for F depends on the physical nature of the phenomena being investigated. We will 
consider two specific cases below: small-amplitude capillary-gravitational waves and flexural- 
gravitational waves. 

The solutions of Eqs (1.1) for which the condition e = a/X ,~ 1 is satisfied will be called small-amplitude 
waves, where a and k are the characteristic amplitude and characteristic width of the wave packet. When 
investigating the interaction between small-amplitude wave packets the dependence of (3~p/bz) ~ on q¢ 
and 11 can be obtained in the form of series in powers of e. 

To isolate the parameter E in (1.1) in explicit form we will change to dimensionless variables, denoted 
by letters with primes 

t'.~f-~=t.vl-g, k(x',y',z')=(x,y,z), ~0' a~f~=~0, rl 'a=rl  (1.5) 

E'a2g = E, F'a2g = F 

where p is the liquid density. The primes will henceforth be omitted. 
In dimensionless variables the total energy E, the energy Fst of the surface tension [7] and the energy 

F~ of the elastic plate [8] have the form 

E=lT~I~s[l~V~sv'q-(~~-~lS(l+l~2(V'q2)']+'q2} _**L L \OZ) 

taxi Lay ) j dxdy 

- dxdy 

u Eh 3 
x= p--~r, D =  12pg(1_v2)~. " 

Here x is the surface-tension coefficient, E is Young's modulus, and v and h are Poisson's ratio and the 
plate thickness. 

The solution of Eq. (1.3) corresponding to fairly rapidly decreasing initial data, has the form 

¢p= ? Jq~f(k, t)e'kX+kZdk, k=(kx,ky), k=lkl (1.6) 
- o o  

We will assume that, at the initial instant of time, the function ¢pfis non-zero only in the e-neighbourhood 
of the wave vectors klk2. During the course of time, as a result of non-linear interactions, the spectrum 
will broaden due to the excitation of multiple harmonics. Hence, at any instant of time we can formally 
write the expansion 

q)o  o ikmx o o ) .  
= Y~CPm(X't) e , q)m = ( (P-m 

m 

X=ex,  m=(ml,m2), k m =mlk I +m2k 2 

(1.7) 
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The superscript open circle denotes that the value of  the function is taken at z = O, while the asterisk 
denotes complex conjugation. The symbol ~, l  denotes summation over m L 2 from --** to **. It follows 
from (1.6) and (1.7), to terms of the order of O(~2), that 

(~q}~°=~m{[k-iEV~kVct-1£2Vk°~kVal3]mcP:}e'~mx (1.8) 

~2 ~ ~2 
(ot,~)=(x,y), V~= kx, V'~=-~x , Vx=-~x , Vxx= x 2 .... 

The subscript m denotes that the value of  the function is taken when k = i~ .  Summation is assumed 
over repeated subscripts a,  13. 

The functions q¢, (O~p/&)* can be represented, to terms of the order of  0 ( ~ ) ,  in the form 

L'~'z ) L 2 )[. Oz ) 
(1.9) 

From (1.7)-(1.9) we obtain the formulae 

(rl_,n ,q>[=, tp:,_= ) = (~= ,q~= ,gz.= ) (1.10) 

_ s +~Zfk2m_n s _iEfV~k)mVaq~ +O(¢2) ¢Pz,m - kmcPm - kmkm-n )qn~0m-n 
m 

Using expansions (I.10), the Hamiltonian H can be expressed explicitly in terms of q.., ~p~. 
The asymptotic equations for the slowly varying amplitudes of the wave packets have the form 

[6] 

. . . .  (1.11) 

An expression for the average Hamil tonian/~can be obtained from (1.2) and (1.10) by dropping all 
terms under the integral proportional to the rapidly varying exponential function. 

Substituting the following formulae into (1.11) 

Tim (X, t) =: ~m (X, T)e i°~mt, {p~ (X, t) = q)m (X, T)e i°=t, O) m = mito I + m2tO 2, T = et 

to m = to(k m ) = kmL(k m ) (1.12) 

where co = c0(k) is the dispersion relation of the linear approximation, and eliminating YI,. from the 
equations obtained, we have 

i tpm + 2e 
Om 

-t-e~ "~. ~mn~Om_n + ie2 Va~O~m Vt~(pm + . . . -  0 (1.13) 
nl 

Link n _ k2 1 ~mn = (kmkm-n - k n k m - n ) -  (knkm-n +knkm-n) 
tomton m-n 2 

It can be seen from (1.13) that the amplitude q~ is of  the order of e if to~ - co2(i~) = O(1). Hence, 
harmonies whose wave numbers satisfy the synchronism conditions 
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kl + k2 = k3, 03(kl ) + 03(k2) = 03(k 3) (1.14) 

interact most intensely. 
The dispersionless equations of the resonant interaction of three wave packets follow from (1.13) 

i( ~---~- V~03jVa](pj = WcjN j, j =  1,2,3 (1.15) 

N I = (p2q~3 ,  N 2 = ~0 t ~0 3, N 3 = ~Ol~O 2 ,  Cj = 03j / kj  

l [ c~l ( klk 3 - klk 3) + Cl I ( k2k 3 - k2k 3)-  c31 (klk 2 + klk 2)] W 

Equations (1.15) are universal and, when considering different surface phenomena, only the coeffici- 
ents for the non-linearity will differ, and these are determined by the dispersion relation of the linear 
approximation. 

The properties of the solutions of Eqs (1.15) depend on the relations between the group velocities 
and on the signs of the coefficients of the quadratic terms, which are the same in the ease considered. 
Hence, it follows that it is impossible to obtain explosive-type interactions [3]. 

In the general case of the interaction of two-dimensional wave packets with unequal group velocities, 
solutions describing partial or complete decay (depending on the ratio of the amplitudes) of a wave 
localized in a plane to localized waves qh and q~2 are obtained analytically. Here the form of the wave 
packets does not change [9]. 

2. THE CONDITIONS FOR RESONANT INTERACTION 

We will assume that there is a direction in the (x, y) plane along which the group velocities of the 
interacting wave packets, V~o~ are equal to c. We will choose this direction as the x axis. Changing to 
a system of coordinates which moves in space with velocity c, we obtain that, in Eqs (1.15), the partial 
derivatives with respect to the x direction disappear, and the system reduces to the plane case. 

The properties of the solutions of system (1.15) in the plane case have been investigated in detail in 
[3, 10, 11] and depend on the ratio of the group velocities V~zoj. If the velocity V~co3 of the pumping 
wave ~ is intermediate, V~0~3 ¢ (V~0h, VYkC02), then ~ decays into cpl, q~ completely over an infinite 
time interval for values of ~ ,  q~ as small as desired until interaction begins. The solutions of the equations 
describing this phenomenon can be obtained analytically using the inverse scattering problem method 
[1, 3] or by a shift in symmetry group from the zero "bare" solution [10, 11]. 

It was pointed out in [3] that, in the majority of problems having a physical application, the velocity 
of the pumping wave turns out to be extremal. In this ease the analytically obtained solutions have no 
physical meaning since they contain singularities where the amplitudes q~ become infinite at some instant 
of time. Numerical investigations [1, 2] show that the intensity of the pumping wave falls considerably 
only after collision with the fairly large wave qh or ~ .  Here, as a result of interaction, a considerable 
portion of the energy transfers into ripple waves, which form a "taft" on the soliton of the pumping 
w a v e .  

In both cases, the decay processes depend very much on the amplitudes of the interacting waves. If 
q~j depends on x, the interaction parameters will be different for different values ofx. Hence it can be 
seen that the derivatives ~qJj/ar may increase with time. In this case dispersion in the x direction may 
influence the interacting wave packets. 

The equations of the interaction of three waves, taking dispersion in the x direction into account, 
can be derived from (1.13) in the same way as (1.15). Here it is assumed that the characteristic dimensions 
of the wave packets are such that the condition ~qJj/~Y = O(~2q~i/~LY 2) is satisfied. In a system of 
coordinates moving along the x axis with velocity c, they have the form 

i -V~03j ¢pj +-~vi  03 i - ~ ¢ p j  = WcjNj, j  = 1,2,3 (2.1) 

~ = X  +cT 

Note that the equations of three-wave interaction, taking dispersion into account, were investigated 
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previously in [4, 11]. The additional dispersion term in the equations in this case is much less than the 
terms with first derivatives, since it is proportional to ~gj/~Y 2. Hence, when investigating the exact 
solutions one must ensure that this condition is satisfied. In the ease considered all the terms in (2.1) 
have the same order of smallness. 

We will consider the conditions for deriving Eqs (2.1) in more detail. They consist of the synchronism 
conditions (1.14) and the conditions for the group velocities to be equal along the x axis 

V~0~ I x x = Vko) 2 = VkCO 3 (2.2) 

For convenience we will take the solutions of Eqs (1.14) in the form 

k I = k ( c o s 0  I , s in01) ,  k2 = a k ( c o s 0 2 , s i n 0 2 )  

k 3 = k ( c o s 0  t +o~cos02 ,  sin01 + a s i n 0 2 )  (2.3) 

Substituting (2.31 ) into (1.14) we obtain the following equations for capillary-gravitational waves and 
flexural-gravitational waves, respectively 

'~k 2 = ~, t (0 ,~) ,  Dk 4 = %(0,a), 0 = 01 - 0  2 (2.4) 

Here 

bs, =2a(l+a2)-AIA.~. b~p =2a(l+a4)-AIA5 
f.,'t = A2 - 4a3, let, = A2 - 4a5, g.,':.ep -- A2 - 4a 

~ = q l + ~  2 + 2 a C O S 0 ,  A n = l + a  n - a n  

Formulae (2.4) parametrically define the wave vectors of the interacting wave packets. The parameters 
are the ratio of the moduli of the wave vectors a = k~Jkl and the angle 0 between them. 

The functions r~ and r~ have a physical meaning only in regions where they are greater than zero. 
In Figs 1 and 2 these regions are bounded by the straight lines a = 0, 0 = 0, 0 = ~ and the curvesAiB1, 
B2CI,A2C2 for r~ andAB, BC andAC for rep. The functions rst and rq, tend to infinity as one approaches 
a = 0 and the cttrviilinear boundaries. 

Equations (2.2) have the trivial solution 01 = 02 = n/2. In this case the conditions V~0~ = 0 and V~ob 
> (V~o~l, V ~ )  are satisfied, i.e. the velocity of the pumping wave is extremal. 

A non-trivial solution exists for flexural-gravitational waves. It is represented in Fig. 2 by the curves 
EF and IH. The bouaadary points of these curves have coordinates E(0.5, ~), F(0.88, 0.8n), I(1.14, 0.8n), 
H(1.47, n). It can be shown that for this solution the following conditions are satisfied 

0 

At 
A, 

C, 
A 

E B H 

C 

O~ 0 (X 

Fig. 1. Fig. 2. 
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V V ¥ V V~,co 1 > V~,¢o 3 > V~,co 2, V;~co 2 <0, O 1E(0,Tt/2) 

i.e. the velocity o f  the pumping wave is intermediate. 
Hence, it has been shown that different types of decaying interactions, described by system (2.1), 

can exist in one and the same system depending on the wave vectors of the interacting waves. 

3. T H E  E X I S T E N C E  OF W A V E G U I D E - T Y P E  S O L U T I O N S  

We will investigate some properties of  Eqs (2.1). This system has two conservation laws which are 
an analogue of the Manley-Rowe relations, and the law of conservation of energy 

0 l 2 -! ~ l v 2 
~-~(CL2]~01,2 +C3 ](p3 [2 ) + - ~ ( C L 2 V : k ( I ) I , 2 [ ( P l , 2 [  +c31V~o33]q~3 [2 ) +  

~ % 1 = 0  +~lmLcL2vk ~,,2%.2 ~-~'~°,.2 +c3 v ,  o~3% (3.1) 

[3/ 
q)j + 

.] + 2 Wq c2c 3 Re(q01~2~ 3 ) d~dY = 0 (j, k, l) = (1,2, 3) (3.2) 

We will seek a solution of (2.1) in the form 

q~ j = ~ j(~)exp i( r/~ + rTF + sjT) (3.3) 

~=c. ,~+cyY+T,  x,.,, +r2X,y = r;,y, sl +s  2 =s3 

Assuming that 

- - I  x.x XX XX Jr.x x x  
C v = A  (V k (03(V k C01 + V  k ¢ . 0 2 ) - V  k 0)lV k (102) 

x,Yl,2 = (¢xA) -1 (Vkr'~(It)3. (Vk0)l,2 -- V~0)2,1) 4- V~Xo)2j (V;0.) 3 -- V~Ct) 1.2 ) (3.4) 

-V ~ ~' ~ ~' ~ ~ V"" V x~" V ~'" A -  k o3(V~t°lVk 0~2+Vkco2Vk C01J-- ~,u'3 * t°l k u'2 

substituting (3.3) into (2.1) and making a scale transformation of q~j, we obtain 

~pj -- A j ( p j  = {Ok(Pl , ( j ,k , l )  = (1,2,3) (3.5) 

v v xx x 2 2 xx A t =(2sj + 2Vk¢o ) +Vj  (rj)  ) l (cxV , o~j) 

The system of equations (3.5) has the integral 

3 
Y~ (Ajq~ - (o2) + 2qhq~2q~ 3 = C, C = coast (3.6) 

]=1 

Note that the three quantities Aj depend on five arbitrary constants c~, ~ ,  Sl,z. Hence they can always 
be chosen so that all A; will be the same and equal to A > 0. In this case it is easy to find a class of exact 
solutions of (3.5) whicfa are expressed in terms of elliptic functions [14, 15]; among these solutions there 
are localized waveguide-type solutions 

• 

q~j = - ~ - c n  L T t ~ )  (3.7) 
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The parameters c,,, ~,2, $1,2 ill solutions (3.7) are not arbitrary and are connected by relations that 
arise from the equ;flity A1 = A2 = A3 > 0. Some particular solutions of system (3.5) for other values of 
these parameters were obtained numerically in [15]. We will show that for a sufficiently small change 
in the parameters z~ in the neighbourhood of A, Eqs (3.5) admit of localized solutions of the type (3.7). 
It is obvious that this family of solutions will be a five-parameter solution with parameters c~, ~ ; ,  sl,2. 

The last assertion will be formulated in the form of the following theorem. 

Theorem 1. We will assume that q~* = (9~,  q~, opt)t, ¢~ = 9~  = ¢P~ = ¢P* is a soliton-like solution of 
system (3.5) for Ai = A (k = 1, 2, 3). Then, for sufficiently small !~ a family of soliton-like solutions 
¢P = (¢Pl, ~ ~) t  of Eqs (3.5) exists with A/= A + g. In addition, the following limits hold 

tq~- q~*l~ < col~lexp(-ol~l ) 

where tt = (gl, g2, g3) t, 0 < ~A and Co is independent of g. 

Proof. We represent the solution of Eqs (3.5) for Aj, indicated in the formulation of the theorem, in 
the form tp i = tp* + 0i. Then, system (3.5) can be written in the following matrix form 

=g (3.8) 

d 2 
- ~ T -  a 

L =  - q~ 

- q~ 

- ~  -cp 

d 2 _ q *  
dx--T-A 

, d 2 

-q~ dx--T-A 

* ^ ^ 

gi = ~i(Pi + ~iCP + ~I~¢Pl , i ¢ k ;e I 

We further define the Banach spaces 

C~.j = (q) e C j(R), supexp(°l;I)lcOCm'l<x oo, ¢0(;) = ~0(-;), j =0,2,  m ~ j )  

and we write)to = ce~ x C~2 x ce$ and Yo = ~o,oX C~,0 x ~,0- It is obvious that ¢p* e X,  la. 
The existence and uniqueness of q~(g) e 2"o (for sufficiently small g), follows from the theorem of 

implicit functions; these satisfy system (3.5) if the operator L: Xo ~ Yo has a bounded inverse. In other 
words, it is required to prove that the equation 

Lop = f (3.9) 

has a unique solution 9 e )to for each f e ]To. System (3.9) is equivalent to the system obtained from 
it by pairwise subtraction of the equations. The latter, in turn, is equivalent to the equation 

IZ + q)*X = f ( l  = d 2 / d x  2 - A: Co. 2 --)  Co. 0 ) ,  (3.10) 

where Z is the difference between 9i and t~j with any unequal subscripts i and j, a n d f e  C~,o. Hence, 
the proof of the inwmibflity of the operator L reduces to proving that Eq. (3.10) has a unique solution 
for any f  from C~,0. 

The operator I is invertible since A > 0. Hence, (3.10) can be rewritten in the form 

(1 + l-lcp*)X = l-If  

The operator FI~*: C~,2 --> C~,2, a < ~/A is compact. Indeed, the set bounded in C~$ is mapped to 
this operator in the bounded set in C~,2 with elements having a uniform exponential decrease at infinity. 
This indicates that the Artsel-Ascoli theorem is applicable and the transform of the bounded set is 
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precompaet. We will show that 1 is not an eigenvalue of the operator -44q) *. It then follows from 
Theorem I on page 476 of [12] that the inverse operator ( 1 +/-lq) .)4 is invertible and continuous. The 
equation l-lq)*~ = Z is equivalent to Schr6dinger's equation with a negative scattering potential Z" - 
AZ + q~*Z = 0, and of course, the corresponding Sturm-Liouville operator does not have a discrete 
spectrum. Hence, it follows that Z -- 0 is a unique solution belonging to C ~ .  

We will write (3.8) in the form 

112,oll -clg, (3.11) 

where II" Ilxo and II • IlY ° are norms in the corresponding spaces. The bounds indicated in the formulation 
of the theorem then qitickly follow from (3.11). 

4. A S Y M P T O T I C  F O R M U L A E  FOR  N O N - L I N E A R  WAVEGUIDES 

We will demonstrate the existence of waveguide-type solutions of system (3.5) which differ from (3.7). 
To do this we will use the method of reducing the dynamical system generated by (3.5) to a central 
manifold [13, 14]. The flow on the central manifold describes all the bounded solutions which do not 
leave a small neighbourhood of the state of rest for all positive and negative values of the "time". The 
spatial variable --** < x < ** plays the part of"time" for travelling waves. All the small bounded solutions 
of the dynamical system 

vi, = Aw + F(l.t, w) (4.1) 

(14 : R n ~ R" is a linear operator--a constant matrix, among the eigenvalues of which there are pure 
imaginary ones, F • Ct(R n, R n) for fairly large integer k, F(0, 0) = 0, ~F(0,  0) = 0 and I~ is the bifurcation 
parameter) lie on the central manifold Wl = h(tt, w0), w0 • E0, invariant to the space extended on the 
eigenvectors corresponding to pure imaginary eigenvaluesA, w 1 • Eh, I ~  -~ E 0 ~ E h and w = w0 + Wx. 
The function h has second order of smallness with respect to St and w0 and inherits the properties of 
symmetry of  system (4.1). 

We will distinguish [15] three successive stages of the investigation of the existence of soliton-like 
solutions in the case considered: 

--reduction of the sixth-order dynamic system (3.5) to a second-order system describing the flux on 
the central manifold; 

- - the approximation of the system on the central manifold to a sequence of integrable systems (in 
quasi-normal form [14]) and the description of the soliton-like solutions of the system in quasi-normal 
form; 

- -proof  of the roughness of the soliton-like solutions with respect to any inverse perturbations of 
higher order in amplitude. 

The invertibility of these perturbations satisfies the corresponding symmetry of the initial equations. 
The sequence of solutions of the systems of equations in quasi-normal form is therefore as accurate 
an approximation as desired of the soliton-like solution of the complete system (3.5). 

We will put (Pl = ~ ,  A1 = A3 = IX in (3.5), where ~t is a small quantity, and A2 = A > 0. In this case 
system (3.5) can be represented in the form (4.1) where w = (qh, q)2, rh, 112) t, I]i = q)),j = 0, 1 

Ili° illool ii II A = 0 0 F = I~£01 + q)l~o2 

o H 

(4.2) 

Note that the right-hand side of (3.5) in the case considered anticommutes with isometry R = diag(1, 
1, -1, -1), i.e. AR = -RA and FOx, Rw) = -RF(tt, w). This indicates that system (3.5) is invertible, i.e. 
among its solutions there are solutions with even qh and ~ and odd 111 and 112. These solutions will also 
be called invertible solutions. The eigenvalues ~ of matrixA satisfy the equation ~2(~2 _ A) = 0, which 
has four roots, and of those of zero multiplicity two lie on the imaginary axis. Note that I F(tt, w) I ~< 
c(I g I I w I + I w I e) for w sufficiently close to zero. 

Suppose w - w0 + wl, where w0 ¢ Eo, while wl • Eh, and similarly for F0 and F1;A0 =Aleo, A1 = 
Aleh, and the system of equations (3.5) has the form 
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~#o = AoWo + Fo(st,Wo + wl), wl = AIwl + Fl(tt, Wo + Wl) (4.3) 

In addition, neighbourhoods of zero U6 C Eo, U~ C Eh and a neighbourhood A of the point St = 0 
obviously exist such that 

F ffi (Fo,FI) t •Ck(AxU~xU[,EoXEh) 
F(0, 0), 0,,F(0, 0) = 0 

We further use the theorem on a central manifold [14], according to which neighbourhoods of zero 
Uo C U'o C Eo, U1 C U~ C Eh a neighbourhood Ao C A of the point St = 0 and a function 

h(st, Wo) • Ck-l(Ao × Uo, U1) 

exist which possess the following properties: 
- - the  set 

M = { (w 0, h(Ix, Wo) : E0 × Ehlwo ~ U0 } 

is a local integral manifold of system (4.3) with Ix • Ao; 
- - each  solution of  system (4.3) with Ix • Ao, Wo(~), Wl(~) • U0 X U 1 for all ~ • R belongs to M; 

h(0, 0) = ~w0h(0, 0) = 0; 

ffRo: Eo ~ Eo, RI: Eh ~ Eh are linear isometries, so that Fj(St, R0w0 RIW1) -- ---Rj~(~ w0, w1),A./Rj -- 
-R./Ij (j = 0, 1), then h(st, R0w0) ffi Rlh(st, wl). 

From the theorem on linear manifolds there follows the reduction of system (4.3) for the solutions 
which remain in U0 x U1 for all x • R. These solutions satisfy the equations 

vv 0 = AoW 0 + f0(l~,Wo), f0(~t, Wo) = F0(IX, w 0 + h(tX, Wo)) (4.4) 

Moreover, the solutions of Eqs (4.4) are invertible with respect to the matrix R0: R = Ro (~ R1, Ro: 
Eo ~ Eo. In the case considered the dimension o l e o  (and, of  course, the central manifold also) is equal 
to two. The eigenvector and associated vector of  the opera torA corresponding to ~, = 0, have the form 

9o = col(l, 0, 0, 0), ~Ol = col(0, 0, 1,0) 

(A090 = 0, A091 = 90, R090 = 90, R091 = -4Pl) 

and of  course 

A°=II  :,  l'o °,l 
For w0 • Eo we have 

Wo = col(9b 92, rh, 112) = aogo + atqh 

The associated vector ¥0 and the eigenvector V1 of the operator A*, conjugate to the operator A, 
are identical with 90 and 91, respectively. 

Equation (4.4) in the ~ ,  91 basis has the form 

a = Aoa + go(l.t, a), a = (ao, al)' (4.5) 

and the vector go --= O(~tl a I + I a 12) has the components (F, 9j ) (/= 0, I) F is the vector (4.2) and (,) 
denotes the scalar products in R 4, where 

(F, 9o) = 0 (F, q01) = I/2(l.ta o + ao92) 

The functions ~z and r h are of the second order of smallness in a and can be expressed in terms of  
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the vector function h(Ix, a) = (h~ hi)  t, which occurs in the theorem on the central manifold, from the 
formula 92 = ho +hi .  

We will further calculate the components ho and hi, apart from terms of the order of !11 a 12 + I a 12, 
which satisfy the second system of equations of (4.3), from which we have in this ease 

¢P2 = - ~ a 0  - a P + o(I.tlal+lal 2 ) 

Hence it follows that the flux on the central manifold has the form 

ao =al ,  &l = ~ t a a o - ~ - ' ~ % -  aoa2+o(Ixlal+la31) (4.6) 

Carrying out the scaling ¢x0 = 2AI IX 1 in  ~ ( ~ ) ,  O~ 1 = 2AI IX I u2 8131(~,), ~, = 8/;, 8 = I g / 2  11/2 we obtain, 
up to terms of the order of O(Ix) 

3~13 o = 131, (:-}~,131 = sign(l.t)~o - 13g (4.7) 

Equations (4.7) for ~t > 0 have solitary-wave type solutions ~ = __.~/(2) ch -1 ~2. 

Theorem 2 (on the roughness ofsoliton-like solutions). We will assume that 13" = (13~, 13~) is a soliton- 
like solution of Eqs (4.7). Then, for sufficiently small Ixo, t t e  (0, ~o) a family of soliton-like solution 
ct = (¢x0, cq) (IX) of the complete system (4.7) exists. The following limits hold 

Icz - cx*{~ < c0Ixexp(-ol~D 

where Co depends only on ~ ,  o < 1. 
Theorem 2 is proved in the same way as Theorem 1. The solutions considered therefore have the 

form 

* • ~/2AI ~tl/2 • 2AI I11 
~01 =q)3 =4-- t-O(IX), q~2---- "1-O(~) 

ch(lix / 21 ~ ~) chl(lix / 21 ~- 4) 

5. S T A B I L I T Y  OF N O N - L I N E A R  W A V E G U I D E S  

In Sections 3 and 4 we proved the existence of five-parameter families of waveguide-type solutions 
of Eqs (3.5). We will investigate their evolution for slow localized perturbations of the wavefront, 
amplitude and phase of the waves propagating in the waveguide 

(P j = (p j( c~(ixY,~tT)~ + cyY + T)expi( ~X~ + rjVY + sJ + O j(~tY,ixT) ) 

rlX = Ri I cx, r~ = R21c  x, r~ = rlX + r~, 0 3 = 0 i + 0 2 ,  ~t,¢l (5.1) 

A slow change in Cx denotes a small change in the wavefront and amplitude of the soliton 9j. The 
functions Oj(IXY, IXT) correspond to a slowly varying wave phase. When Ix = 0 the functions (5.1) satisfy 
Eqs (3.5). 

Substituting (5.1) into (2.1), we obtain, to the first order in IX 

0% . (  ,9 
, ,  : o  

Integrating these equations with respect to [ from --~ to oo, we obtain a system, the general solution 
of which has the form 

¢~ = exp(/ ,  + / 2  -A), f~ = fj()~- v~%Tb 
o, =A-f3,  02 =f , -A ,  e3=A-f3 



Non-linear waveguides in the resonant interaction of three surface waves 193 

and describes the propagation of small perturbations along the front of a non-linear waveguide parallel 
to the straight line c~¥ + cyY ffi 0 The perturbations q~. change the curvature of the wavefront and the 

• . " . ~ /  , . . . . .  

phase of resonant1 interacting waves and propagate voth thetr group velocities. The projections of their 
velocities onto the Y axis are equal to V ~ .  

Thus, we have proved the stability of the solutions considered with respect to slow changes in the 
boundaries of the waveguide and the amplitudes of the waves propagating along it. 
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